Mars is the fourth planet from the Sun and the seventh largest:
orbit: 227,940,000 km (1.52 AU) from Sun
diameter: 6,794 km
mass: 6.4219e23 kg
Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming Mars may prefer this symbolism.) The name of the month March derives from Mars.
Mars has been known since prehistoric times. Of course, it has been extensively studied with ground-based observatories. But even very large telescopes find Mars a difficult target, it's just too small. It is still a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!) for human habitation. But the famous "canals" "seen" by Lowell and others were, unfortunately, just as imaginary as Barsoomian princesses.
The first spacecraft to visit Mars was Mariner 4 in 1965. Several others followed including Mars 2, the first spacecraft to land on Mars and the two Viking landers in 1976. Ending a long 20 year hiatus, Mars Pathfinder landed successfully on Mars on 1997 July 4. In 2004 the Mars Expedition Rovers "Spirit" and "Opportunity" landed on Mars sending back geologic data and many pictures; they are still operating after more than three years on Mars. In 2008, Phoenix landed in the northern plains to search for water. Three Mars orbiters (Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express) are also currently in operation.
Mars' orbit is significantly elliptical. One result of this is a temperature variation of about 30 C at the subsolar point between aphelion and perihelion. This has a major influence on Mars' climate. While the average temperature on Mars is about 218 K (-55 C, -67 F), Martian surface temperatures range widely from as little as 140 K (-133 C, -207 F) at the winter pole to almost 300 K (27 C, 80 F) on the day side during summer.
Though Mars is much smaller than Earth, its surface area is about the same as the land surface area of Earth.
Mars has some of the most highly varied and interesting terrain of any of the terrestrial planets, some of it quite spectacular:
- Olympus Mons: the largest mountain in the Solar System rising 24 km (78,000 ft.) above the surrounding plain. Its base is more than 500 km in diameter and is rimmed by a cliff 6 km (20,000 ft) high.
- Tharsis: a huge bulge on the Martian surface that is about 4000 km across and 10 km high.
- Valles Marineris: a system of canyons 4000 km long and from 2 to 7 km deep (top of page);
- Hellas Planitia: an impact crater in the southern hemisphere over 6 km deep and 2000 km in diameter.
The southern hemisphere of Mars is predominantly ancient cratered highlands somewhat similar to the Moon. In contrast, most of the northern hemisphere consists of plains which are much younger, lower in elevation and have a much more complex history. An abrupt elevation change of several kilometers seems to occur at the boundary. The reasons for this global dichotomy and abrupt boundary are unknown (some speculate that they are due to a very large impact shortly after Mars' accretion). Mars Global Surveyor has produced a nice 3D map of Mars that clearly shows these features.
The interior of Mars is known only by inference from data about the surface and the bulk statistics of the planet. The most likely scenario is a dense core about 1700 km in radius, a molten rocky mantle somewhat denser than the Earth's and a thin crust. Data from Mars Global Surveyor indicates that Mars' crust is about 80 km thick in the southern hemisphere but only about 35 km thick in the north. Mars' relatively low density compared to the other terrestrial planets indicates that its core probably contains a relatively large fraction of sulfur in addition to iron (iron and iron sulfide).
Like Mercury and the Moon, Mars appears to lack active plate tectonics at present; there is no evidence of recent horizontal motion of the surface such as the folded mountains so common on Earth. With no lateral plate motion, hot-spots under the crust stay in a fixed position relative to the surface. This, along with the lower surface gravity, may account for the Tharis bulge and its enormous volcanoes. There is no evidence of current volcanic activity. However, data from Mars Global Surveyor indicates that Mars very likely did have tectonic activity sometime in the past.
There is very clear evidence of erosion in many places on Mars including large floods and small river systems. At some time in the past there was clearly some sort of fluid on the surface. Liquid water is the obvious fluid but other possibilities exist. There may have been large lakes or even oceans; the evidence for which was strenghtened by some very nice images of layered terrain taken by Mars Global Surveyor and the mineralology results from MER Opportunity. Most of these point to wet episodes that occurred only briefly and very long ago; the age of the erosion channels is estimated at about nearly 4 billion years. However, images from Mars Express released in early 2005 show what appears to be a frozen sea that was liquid very recently (maybe 5 million years ago). Confirmation of this interpretation would be a very big deal indeed! (Valles Marineris was NOT created by running water. It was formed by the stretching and cracking of the crust associated with the creation of the Tharsis bulge.)
Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The surface of Mars is therefore much colder than the Earth would be at that distance from the Sun.
Mars has a very thin atmosphere composed mostly of the tiny amount of remaining carbon dioxide (95.3%) plus nitrogen (2.7%), argon (1.6%) and traces of oxygen (0.15%) and water (0.03%). The average pressure on the surface of Mars is only about 7 millibars (less than 1% of Earth's), but it varies greatly with altitude from almost 9 millibars in the deepest basins to about 1 millibar at the top of Olympus Mons. But it is thick enough to support very strong winds and vast dust storms that on occasion engulf the entire planet for months. Mars' thin atmosphere produces a greenhouse effect but it is only enough to raise the surface temperature by 5 degrees (K); much less than what we see on Venus and Earth.
Early telescopic observations revealed that Mars has permanent ice caps at both poles; they're visible even with a small telescope. We now know that they're composed of water ice and solid carbon dioxide ("dry ice"). The ice caps exhibit a layered structure with alternating layers of ice with varying concentrations of dark dust. In the northern summer the carbon dioxide completely sublimes, leaving a residual layer of water ice. ESA's Mars Express has shown that a similar layer of water ice exists below the southern cap as well. The mechanism responsible for the layering is unknown but may be due to climatic changes related to long-term changes in the inclination of Mars' equator to the plane of its orbit. There may also be water ice hidden below the surface at lower latitudes. The seasonal changes in the extent of the polar caps changes the global atmospheric pressure by about 25% (as measured at the Viking lander sites).
Recent observations with the Hubble Space Telescope have revealed that the conditions during the Viking missions may not have been typical. Mars' atmosphere now seems to be both colder and dryer than measured by the Viking landers (more details from STScI).
The Viking landers performed experiments to determine the existence of life on Mars. The results were somewhat ambiguous but most scientists now believe that they show no evidence for life on Mars (there is still some controversy, however). Optimists point out that only two tiny samples were measured and not from the most favorable locations. More experiments will be done by future missions to Mars.
A small number of meteorites (the SNC meteorites) are believed to have originated on Mars.
On 1996 Aug 6, David McKay et al announced what they thought might be evidence of ancient Martian microorganisms in the meteorite ALH84001. Though there is still some controversy, the majority of the scientific community has not accepted this conclusion. If there is or was life on Mars, we still haven't found it.
Large, but not global, weak magnetic fields exist in various regions of Mars. This unexpected finding was made by Mars Global Surveyor just days after it entered Mars orbit. They are probably remnants of an earlier global field that has since disappeared. This may have important implications for the structure of Mars' interior and for the past history of its atmosphere and hence for the possibility of ancient life.
When it is in the nighttime sky, Mars is easily visible with the unaided eye. Mars is a difficult but rewarding target for an amateur telescope though only for the three or four months each martian year when it is closest to Earth. Its apparent size and brightness varies greatly according to its relative position to the Earth. There are several Web sites that show the current position of Mars (and the other planets) in the sky. More detailed and customized charts can be created with a planetarium program.
Mars' Satellites
Mars has two tiny satellites which orbit very close to the martian surface:Distance Radius Mass Satellite (000 km) (km) (kg) Discoverer Date --------- -------- ------ ------- ---------- ---- Phobos 9 11 1.08e16 Hall 1877 Deimos 23 6 1.80e15 Hall 1877
PASADENA, Calif. -- NASA's Mars Exploration Rover Spirit resumed driving Saturday after engineers gained confidence from diagnostic activities earlier in the week evaluating how well the rover senses its orientation.
Spirit drove about 30 centimeters (1 foot) Saturday, during the 1,806th Martian day, or sol, of what was originally planned as a 90-day mission. The rover team had commanded a longer drive, but Spirit stopped short after its right-front wheel, which no longer turns, struck a partially buried rock. The rover drivers prepared commands Monday for the next drive in a slightly different direction to get around that rock.
A diagnostic test on Sol 1805 provided an evaluation of how accurately Spirt's accelerometers sense the rover's orientation or attitude. The testing was a follow-up to Spirit's mistaken calculation of where to expect to see the sun on Sol 1802. The sol 1805 results indicate the accelerometers may have a bias of about 3 degrees. This would explain why Spirit pointed a camera about three degrees away from the sun's actual position on Sol 1802. However, the Sol 1805 test also showed that Spirit's gyroscopes are operating properly, which convinced engineers that the rover could safely resume driving. Only the gyroscopes are used for orientation information during driving.
Diagnostic tests last week also checked possible explanations for behavior for one period of activity on Spirit's Sol 1800, when the rover did not save information into its non-volatile flash memory, so the information was lost when the rover next powered down.
"We may not find any data that will explain what happened on Sol 1800, but there's no evidence that whatever happened then has recurred on subsequent sols," said Jacob Matijevic of the rover engineering team at NASA's Jet Propulsion Laboratory, Pasadena. One possibility is that a cosmic-ray hit could have temporarily put Spirit temporarily into a mode that disables use of the flash memory. The team intentionally used that mode -- relying only on volatile random-access memory -- during recovery from a memory problem five years ago on Spirit.
Spirit is just north of a low plateau called "Home Plate." It spent 2008 on a north-facing slope on the edge of Home Plate so that its solar panels stayed tilted toward the winter sun for maximum electrical output.
Spirit drove down off Home Plate on Jan. 6, 2009. It subsequently checked whether a patch of nearby soil, called "Stapledon," had a high concentration of silica, like a silica-rich patch of soil Spirit discovered east of Home Plate in 2007. The earlier discovery was interpreted as evidence left by a hot-spring or steam-vent environment. Examination with Spirit's alpha particle X-ray spectrometer confirmed silica at Stapledon. This indicates that the environment that deposited the silica was not limited to the location found earlier.
JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover project for the NASA Science Mission Directorate, Washington. Spirit and its twin, Opportunity, landed on Mars in January 2004 and have operated 20 times longer than their original prime missions.
| |||
"The rover is back on flat ground," an engineer who drives it, Paolo Bellutta of NASA's Jet Propulsion Laboratory, announced to the mission's international team of scientists and engineers.
Opportunity used its own entry tracks from nearly a year ago as the path for a drive of 6.8 meters (22 feet) bringing the rover out over the top of the inner slope and through a sand ripple at the lip of Victoria Crater. The exit drive, conducted late Thursday, completed a series of drives covering 50 meters (164 feet) since the rover team decided about a month ago that it had completed its scientific investigations inside the crater.
"We're headed to the next adventure out on the plains of Meridiani," said JPL's John Callas, project manager for Opportunity and its twin Mars rover, Spirit. "We safely got into the crater, we completed our exploration there, and we safely got out. We were concerned that any wheel failure on our aging rover could have left us trapped inside the crater."
The Opportunity mission has focused on Victoria Crater for more than half of the 55 months since the rover landed in the Meridiani Planum region of equatorial Mars. The crater spans about 800 meters (half a mile) in diameter and reveals rock layers that hold clues to environmental conditions of the area through an extended period when the rocks were formed and altered.
The team selected Victoria as the next major destination after Opportunity exited smaller Endurance Crater in late 2004. The ensuing 22-month traverse to Victoria included stopping for studies along the route and escaping from a sand trap. The rover first reached the rim of Victoria in September 2007. For nearly a year, it then explored partway around the rim, checking for the best entry route and examining from above the rock layers exposed in a series of promontories that punctuate the crater perimeter.
Now that Opportunity has finished exploring Victoria Crater and returned to the surrounding plain, the rover team plans to use tools on the robotic arm in coming months to examine an assortment of cobbles -- rocks about fist-size and larger -- that may have been thrown from impacts that dug craters too distant for Opportunity to reach.
JPL, a division of the California Institute of Technology, Pasadena, manages the rovers for the NASA Science Mission Directorate, Washington. For images and information about NASA's Opportunity and Spirit Mars rovers, visit:
Controllers Cheer as Data Arrive from NASA's Spirit Rover
| |||
Spirit communicated via the Mars Odyssey orbiter today right at the time when ground controllers had told it to, prompting shouts of "She's talking!" among the rover team at NASA's Jet Propulsion Laboratory, Pasadena, Calif.
"This means Spirit has not gone into a fault condition and is still being controlled by sequences we send from the ground," said John Callas of NASA's Jet Propulsion Laboratory, Pasadena, Calif., project manager for Spirit and its twin, Opportunity.
The solar-powered rover still has low energy, a condition worsened by a dust storm in recent days. Today's communication confirmed that Spirit had received commands sent on Tuesday and that the battery charge had not fallen low enough to trigger a pre-programmed fault mode.
Callas said, "The baby is crying, which means it is healthy enough to communicate normally. Now we are analyzing the data we've received to determine what the next commands should be, but this is all good news."
Spirit has been operating on Mars for nearly five years in an exploration mission originally planned to last three months. The recent dust storm is clearing, but a coating of dust on Spirit's solar panels is reducing the rover's ability to generate electricity even when the sky is clear.
| |||
To reach the crater the rover team calls Endeavour, Opportunity would need to drive approximately 12 kilometers (7 miles) to the southeast, matching the total distance it has traveled since landing on Mars in early 2004. The rover climbed out of Victoria Crater earlier this month.
"We may not get there, but it is scientifically the right direction to go anyway," said Steve Squyres of Cornell University, principal investigator for the science instruments on Opportunity and its twin rover, Spirit. "This crater is staggeringly large compared to anything we've seen before."
Getting there would yield a look inside a bowl 22 kilometers (13.7 miles) across. Scientists expect to see a much deeper stack of rock layers than those examined by Opportunity in Victoria Crater.
"I would love to see that view from the rim," Squyres said. "But even if we never get there, as we move southward we expect to be getting to younger and younger layers of rock on the surface. Also, there are large craters to the south that we think are sources of cobbles that we want to examine out on the plain. Some of the cobbles are samples of layers deeper than Opportunity will ever see, and we expect to find more cobbles as we head toward the south."
Opportunity will have to pick up the pace to get there. The rover team estimates Opportunity may be able to travel about 110 yards each day it is driven toward the Endeavour crater. Even at that pace, the journey could take two years.
"This is a bolder, more aggressive objective than we have had before," said John Callas, the project manager for both Mars rovers at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's tremendously exciting. It's new science. It's the next great challenge for these robotic explorers."
Opportunity, like Spirit, is well past its expected lifetime on Mars, and might not keep working long enough to reach the crater. However, two new resources not available during the 4-mile drive toward Victoria Crater in 2005 and 2006 are expected to aid in this new trek.
One is imaging from orbit of details smaller than the rover itself, using the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter, which arrived at the Red Planet in 2006.
"HiRISE allows us to identify drive paths and potential hazards on the scale of the rover along the route," Callas said. "This is a great example of how different parts of NASA's Mars Exploration Program reinforce each other."
Other advantages come from a new version of flight software uplinked to Opportunity and Spirit in 2006, boosting their ability to autonomously choose routes and avoid hazards such as sand dunes.
During its first year on Mars, Opportunity found geological evidence that the area where it landed had surface and underground water in the distant past. The rover's explorations since have added information about how that environment changed over time. Finding rock layers above or below the layers already examined adds windows into later or earlier periods of time.